
NAG Fortran Library Routine Document

E04ZCF=E04ZCA

Note: before using this routine, please read the Users’ Note for your implementation to check the interpretation of bold italicised terms and
other implementation-dependent details.

1 Purpose

E04ZCF=E04ZCA checks that user-supplied routines for evaluating an objective function, constraint
functions and their first derivatives, produce derivative values which are consistent with the function and
constraint values calculated.

E04ZCA is a version of E04ZCF that has additional parameters in order to make it safe for use in
multithreaded applications (see Section 5 below).

2 Specifications

2.1 Specification for E04ZCF

SUBROUTINE E04ZCF(N, NCNLN, NROWJ, CONFUN, OBJFUN, C, CJAC, OBJF,
1 OBJGRD, X, WORK, LWORK, IFAIL)

INTEGER N, NCNLN, NROWJ, LWORK, IFAIL
real C(NCNLN), CJAC(NROWJ,N), OBJF, OBJGRD(N), X(N),

1 WORK(LWORK)
EXTERNAL CONFUN, OBJFUN

2.2 Specification for E04ZCA

SUBROUTINE E04ZCA(N, NCNLN, NROWJ, CONFUN, OBJFUN, C, CJAC, OBJF,
1 OBJGRD, X, WORK, LWORK, IUSER, RUSER, IFAIL)

INTEGER N, NCNLN, NROWJ, LWORK, IUSER(*), IFAIL
real C(NCNLN), CJAC(NROWJ,N), OBJF, OBJGRD(N), X(N),

1 WORK(LWORK), RUSER(*)
EXTERNAL CONFUN, OBJFUN

3 Description

Routines for minimizing a function of several variables subject to general equality and/or inequality
constraints may require the user to provide subroutines to evaluate the objective function
F ðx1; x2; . . . ; xnÞ, constraint functions ciðx1; x2; . . . ; xnÞ, for i ¼ 1; 2; . . . ;m, and their first derivatives.
E04ZCF=E04ZCA is designed to check the derivatives calculated by such user-supplied routines. As well

as the routines to be checked (CONFUN and OBJFUN), you must supply a point x ¼ ðx1; x2; . . . ; xnÞT at
which the checks will be made.

To check the first derivatives of F , the routine first calls OBJFUN to evaluate F and its first derivatives

gj ¼
@F

@xj
, for j ¼ 1; 2; . . . ; n at x. The components of the user-supplied derivatives along two orthogonal

directions (defined by unit vectors p1 and p2, say) are then calculated; these will be gTp1 and gTp2
respectively. The same components are also estimated by finite differences, giving quantities

vk ¼
F ðxþ hpkÞ � F ðxÞ

h
; k ¼ 1; 2

where h is a small positive scalar. If the relative difference between v1 and gTp1 or between v2 and gTp2
is ‘judged’ too large, the error indicator IFAIL (see Section 6) is set to 2.

When n ¼ 1 only p1 and v1 are generated.

E04 – Minimizing or Maximizing a Function E04ZCF=E04ZCA

[NP3546/20A] E04ZCF=E04ZCA.1

Similar checks are made of whether components of the first derivatives

@ci
@xj

; i ¼ 1; 2; . . . ;m; j ¼ 1; 2; . . . ; n

(as calculated by CONFUN at x) are consistent with difference approximations to the same quantities.

4 References

Gill P E, Murray W and Wright M H (1981) Practical Optimization Academic Press

5 Parameters

1: N – INTEGER Input

On entry: the number n of independent variables in the objective and constraint functions.

Constraint: N � 1.

2: NCNLN – INTEGER Input

On entry: the number m of constraint functions.

Constraint: NCNLN � 0.

3: NROWJ – INTEGER Input

On entry: the first dimension of the array CJAC as declared in the (sub)program from which
E04ZCF=E04ZCA is called.

Constraint: NROWJ � maxð1;NCNLNÞ.

4: CONFUN – SUBROUTINE, supplied by the user. External Procedure

CONFUN must calculate the vector cðxÞ of nonlinear constraint functions and its Jacobian for a
specified n-vector x. If there are no nonlinear constraints (NCNLN ¼ 0), CONFUN will not be
called by E04ZCF=E04ZCA and CONFUN may be the dummy routine E04VDM=E54VDM.
(E04VDM=E54VDM is included in the NAG Fortran Library and so need not be supplied by the
user. Its name may be implementation-dependent: see the Users’ Note for your implementation for
details.) If there are nonlinear constraints, E04ZCF=E04ZCA always calls CONFUN and OBJFUN
together, in that order.

The specification of CONFUN for E04ZCF is:

SUBROUTINE CONFUN(MODE, NCNLN, N, NROWJ, X, C, CJAC, NSTATE)

INTEGER MODE, NCNLN, N, NROWJ, NSTATE
real X(N), C(NROWJ), CJAC(NROWJ,N)

The specification of CONFUN for E04ZCA is:

SUBROUTINE CONFUN(MODE, NCNLN, N, NROWJ, X, C, CJAC, NSTATE, IUSER,
1 RUSER)

INTEGER MODE, NCNLN, N, NROWJ, NSTATE, IUSER(*)
real X(N), C(NROWJ), CJAC(NROWJ,N), RUSER(*)

1: MODE – INTEGER Input/Output

MODE is a flag that you may set within CONFUN to indicate a failure in the evaluation
of the nonlinear constraints.

On entry: MODE is always non-negative.

On exit: if MODE is negative on exit from CONFUN, then execution of
E04ZCF=E04ZCA will be terminated with IFAIL containing the negative value of MODE.

E04ZCF=E04ZCA NAG Fortran Library Manual

E04ZCF=E04ZCA.2 [NP3546/20A]

2: NCNLN – INTEGER Input

On entry: the number m of nonlinear constraints, as input to E04ZCF=E04ZCA.

3: N – INTEGER Input

On entry: the number n of variables, as input to E04ZCF=E04ZCA.

4: NROWJ – INTEGER Input

On entry: the first dimension of the array CJAC and the length of the array C, as input to
E04ZCF=E04ZCA.

5: X(N) – real array Input

On entry: the vector x of variables at which the constraint functions are to be evaluated.

6: C(NROWJ) – real array Output

On exit: C must contain the NCNLN nonlinear constraint values, with the value of the jth
nonlinear constraint in CðjÞ.

7: CJAC(NROWJ,N) – real array Output

On exit: CJAC must contain the Jacobian of the nonlinear constraint functions with the ith
row of CJAC containing the gradient of the ith nonlinear constraint, i.e., CJACði; jÞ must
contain the partial derivative of ci with respect to xj. If CJAC contains any constant

elements, a saving in computation can be made by setting them once only, when
NSTATE ¼ 1 (see below).

8: NSTATE – INTEGER Input

On entry: NSTATE will be 1 on the first call to CONFUN by E04ZCF=E04ZCA, and is 0
for the two subsequent calls. Thus, if the user wishes, NSTATE may be tested within
CONFUN in order to perform certain calculations once only. For example, you may read
data or initialise COMMON blocks when NSTATE ¼ 1. In addition, the constant
elements of CJAC can be set in CONFUN when NSTATE ¼ 1, and need not be defined
on subsequent calls.

Note: the following are additional parameters for specific use of CONFUN with E04ZCA. Users of

E04ZCF therefore need not read the remainder of this description.

9: IUSER(*) – INTEGER array User Workspace
10: RUSER(*) – real array User Workspace

CONFUN is called from E04ZCA with the parameters IUSER and RUSER as supplied to
E04ZCA. You are free to use the arrays IUSER and RUSER to supply information to
CONFUN.

CONFUN must be declared as EXTERNAL in the (sub)program from which E04ZCF=E04ZCA is
called. Parameters denoted as Input must not be changed by this procedure.

5: OBJFUN – SUBROUTINE, supplied by the user. External Procedure

OBJFUN must calculate the objective function F ðxÞ and its gradient for a specified n-element
vector x.

E04 – Minimizing or Maximizing a Function E04ZCF=E04ZCA

[NP3546/20A] E04ZCF=E04ZCA.3

The specification of OBJFUN for E04ZCF is:

SUBROUTINE OBJFUN(MODE, N, X, OBJF, OBJGRD, NSTATE)

INTEGER MODE, N, NSTATE
real X(N), OBJF, OBJGRD(N)

The specification of OBJFUN for E04ZCA is:

SUBROUTINE OBJFUN(MODE, N, X, OBJF, OBJGRD, NSTATE, IUSER, RUSER)

INTEGER MODE, N, NSTATE, IUSER(*)
real X(N), OBJF, OBJGRD(N), RUSER(*)

1: MODE – INTEGER Input/Output

MODE is a flag that you may set within OBJFUN to indicate a failure in the evaluation of
the objective function.

On entry: MODE is always non-negative.

On exit: if MODE is negative on exit from OBJFUN, then execution of E04ZCF=E04ZCA
will be terminated with IFAIL set to MODE.

2: N – INTEGER Input

On entry: the number n of variables as input to E04ZCF=E04ZCA.

3: X(N) – real array Input

On entry: the vector x of variables at which the objective function is to be evaluated.

4: OBJF – real Output

On exit: OBJF must be set to the value of the objective function.

5: OBJGRD(N) – real array Output

On exit: OBJGRD must contain the gradient vector of the objective function, with
OBJGRDðjÞ containing the partial derivative of F with respect to xj.

6: NSTATE – INTEGER Input

On entry: NSTATE will be 1 on the first call to OBJFUN by E04ZCF=E04ZCA, and is 0
on the two subsequent calls. Thus, if the user wishes, NSTATE may be tested in order to
perform certain calculations only on the first call of OBJFUN, e.g., read data or initialise
COMMON blocks. Note that if there are any nonlinear constraints, CONFUN and
OBJFUN are called together, in that order.

Note: the following are additional parameters for specific use of OBJFUN with E04ZCA. Users of

E04ZCF therefore need not read the remainder of this description.

7: IUSER(*) – INTEGER array User Workspace
8: RUSER(*) – real array User Workspace

OBJFUN is called from E04ZCA with the parameters IUSER and RUSER as supplied to
E04ZCA. You are free to use the arrays IUSER and RUSER to supply information to
OBJFUN.

OBJFUN must be declared as EXTERNAL in the (sub)program from which E04ZCF=E04ZCA is
called. Parameters denoted as Input must not be changed by this procedure.

E04ZCF=E04ZCA NAG Fortran Library Manual

E04ZCF=E04ZCA.4 [NP3546/20A]

6: C(NCNLN) – real array Output

On exit: unless you set MODE < 0 in the first call of CONFUN, CðiÞ contains the value of ciðxÞ at
the point given in X, for i ¼ 1; 2; . . . ;m.

If NCNLN ¼ 0, C is not referenced.

7: CJAC(NROWJ,N) – real array Output

On exit: unless you set MODE < 0 in the first call of CONFUN, CJACði; jÞ contains the value of

the derivative
@ci
@xj

at the point given in X, as calculated by CONFUN, for j ¼ 1; 2; . . . ; n;

i ¼ 1; 2; . . . ;m.

If NCNLN ¼ 0, CJAC is not referenced.

8: OBJF – real Output

On exit: unless you set MODE < 0 in the first call of OBJFUN, OBJF contains the value of the
objective function F ðxÞ at the point given in X.

9: OBJGRD(N) – real array Output

On exit: unless you set MODE < 0 in the first call of OBJFUN, OBJGRDðjÞ contains the value of

the derivative
@F

@xj
at the point given in X, as calculated by OBJFUN, for j ¼ 1; 2; . . . ; n.

10: X(N) – real array Input

On entry: XðjÞ, for j ¼ 1; 2; . . . ; n must be set to the co-ordinates of a suitable point x at which to
check the derivatives calculated by CONFUN and OBJFUN. ‘Obvious’ settings such as 0 or 1,
should not be used since, at such points, incorrect terms may take correct values (particularly zero),
so that errors could go undetected. Similarly, it is preferable that no two elements of x should be
equal.

11: WORK(LWORK) – real array Workspace
12: LWORK – INTEGER Input

On entry: the dimension of the array WORK as declared in the (sub)program from which
E04ZCF=E04ZCA is called.

Constraint: LWORK � 4� Nþ NCNLNþ N� NROWJ.

13: IFAIL – INTEGER Input/Output

Note: for E04ZCA, IFAIL does not occur in this position in the parameter list. See the additional

parameters described below.

On entry: IFAIL must be set to 0, �1 or 1. Users who are unfamiliar with this parameter should
refer to Chapter P01 for details.

On exit: IFAIL ¼ 0 unless the routine detects an error (see Section 6).

For environments where it might be inappropriate to halt program execution when an error is
detected, the value �1 or 1 is recommended. If the output of error messages is undesirable, then the
value 1 is recommended. Otherwise, because for this routine the values of the output parameters
may be useful even if IFAIL 6¼ 0 on exit, the recommended value is �1. When the value �1 or 1
is used it is essential to test the value of IFAIL on exit.

E04 – Minimizing or Maximizing a Function E04ZCF=E04ZCA

[NP3546/20A] E04ZCF=E04ZCA.5

Note: the following are additional parameters for specific use with E04ZCA. Users of E04ZCF therefore need

not read the remainder of this section.

13: IUSER(*) – INTEGER array User Workspace

Note: the dimension of the array IUSER must be at least 1.

IUSER is not used by E04ZCA, but is passed directly to the external procedure QPHX and may be
used to pass information to that routine.

14: RUSER(*) – real array User Workspace

Note: the dimension of the array RUSER must be at least 1.

RUSER is not used by E04ZCA, but is passed directly to the external procedure QPHX and may be
used to pass information to that routine.

15: IFAIL – INTEGER Input/Output

Note: see the parameter description for IFAIL above.

6 Error Indicators and Warnings

If on entry IFAIL ¼ 0 or �1, explanatory error messages are output on the current error message unit (as
defined by X04AAF).

Errors or warnings detected by the routine:

IFAIL < 0

A negative value of IFAIL indicates an exit from E04ZCF=E04ZCA because the user has set
MODE negative in OBJFUN or CONFUN. The value of IFAIL will be the same as the user’s
setting of MODE. The checks on OBJFUN and CONFUN will not have been completed.

IFAIL ¼ 1

On entry, N < 1,
or NCNLN < 0,
or NROWJ < maxð1;NCNLNÞ,
or LWORK < 4� Nþ NCNLNþ N� NROWJ.

IFAIL ¼ 2

You should check carefully the derivation and programming of expressions for the derivatives of
F ðxÞ, because it is very unlikely that OBJFUN is calculating them correctly.

IFAIL ¼ 2þ i, for i ¼ 1; 2; . . . ;NCNLN

You should check carefully the derivation and programming of expressions for the derivatives of
ciðxÞ, because it is very unlikely that CONFUN is calculating them correctly. See also Section 7.

7 Accuracy

IFAIL is set to 2 if

ðvk � gTpkÞ2 � h� ððgTpkÞ2 þ 1Þ

for k ¼ 1 or 2. (See Section 3 for definitions of the quantities involved.) The scalar h is set equal to
ffiffi

�
p

,
where � is the machine precision (see X02AJF).

IFAIL is set to 2þ i if a relation analogous to that given above holds for ci and its calculated derivatives.

E04ZCF=E04ZCA NAG Fortran Library Manual

E04ZCF=E04ZCA.6 [NP3546/20A]

8 Further Comments

The user-supplied routines CONFUN and OBJFUN are both called three times unless NCNLN ¼ 0, in
which case CONFUN is not called.

Before using E04ZCF=E04ZCA to check the calculation of first derivatives, you should be confident that
CONFUN and OBJFUN are calculating F and the ci correctly. The usual way of checking the calculation
of these function values is to compare values of F ðxÞ and the ciðxÞ calculated by OBJFUN and CONFUN
at non-trivial points x with values calculated independently. (‘Non-trivial’ means that, as when setting x
before calling E04ZCF=E04ZCA, co-ordinates such as 0 or 1 should be avoided.)

9 Example

The example problem has nine variables, finite bounds on six of the variables, four general linear
constraints, and fifteen nonlinear constraints.

The objective function is

F ðxÞ ¼ �x2x6 þ x1x7 � x3x7 � x5x8 þ x4x9 þ x3x8

and the fifteen nonlinear constraint functions are

c1ðxÞ ¼ x21 þ x2
6;

c2ðxÞ ¼ ðx2 � x1Þ2 þ ðx7 � x6Þ2;
c3ðxÞ ¼ ðx3 � x1Þ2 þ x2

6;
c4ðxÞ ¼ ðx1 � x4Þ2 þ ðx6 � x8Þ2;
c5ðxÞ ¼ ðx1 � x5Þ2 þ ðx6 � x9Þ2;
c6ðxÞ ¼ x22 þ x2

7;
c7ðxÞ ¼ ðx3 � x2Þ2 þ x2

7;
c8ðxÞ ¼ ðx4 � x2Þ2 þ ðx8 � x7Þ2;
c9ðxÞ ¼ ðx2 � x5Þ2 þ ðx7 � x9Þ2;
c10ðxÞ ¼ x23;
c11ðxÞ ¼ ðx4 � x3Þ2 þ x2

8;
c12ðxÞ ¼ ðx5 � x3Þ2 þ x2

9;
c13ðxÞ ¼ x24 þ x2

8;
c14ðxÞ ¼ ðx4 � x5Þ2 þ ðx9 � x8Þ2;
c15ðxÞ ¼ x25 þ x2

9:

The example checks the gradients at two separate points.

9.1 Program Text

Note: the listing of the example program presented below uses bold italicised terms to denote precision-dependent details. Please read the
Users’ Note for your implementation to check the interpretation of these terms. As explained in the Essential Introduction to this manual,
the results produced may not be identical for all implementations.

* E04ZCF Example Program Text
* Mark 14 Revised. NAG Copyright 1989.
* .. Parameters ..

INTEGER NIN, NOUT
PARAMETER (NIN=5,NOUT=6)

* .. Local Scalars ..
real OBJF
INTEGER I, IFAIL, J, K, LWORK, N, NCNLN, NROWJ

* .. Local Arrays ..
real C(20), CJAC(20,9), OBJGRD(9), WORK(351), X(9)

* .. External Subroutines ..
EXTERNAL CONFUN, E04ZCF, OBJFUN

* .. Data statements ..
DATA NROWJ/20/, LWORK/351/

* .. Executable Statements ..
WRITE (NOUT,*) ’E04ZCF Example Program Results’

* Skip heading in data file
READ (NIN,*)
N = 9

E04 – Minimizing or Maximizing a Function E04ZCF=E04ZCA

[NP3546/20A] E04ZCF=E04ZCA.7

NCNLN = 15
* Read in two points and check the derivatives at each point.

DO 20 K = 1, 2
READ (NIN,99999) (X(J),J=1,N)
IFAIL = 1

*
CALL E04ZCF(N,NCNLN,NROWJ,CONFUN,OBJFUN,C,CJAC,OBJF,OBJGRD,X,

+ WORK,LWORK,IFAIL)
*

WRITE (NOUT,*)
IF (IFAIL.EQ.0) THEN

WRITE (NOUT,*) ’Derivatives probably correct at the point’
WRITE (NOUT,99998) (X(J),J=1,N)

ELSE IF (IFAIL.EQ.1) THEN
WRITE (NOUT,*) ’Incorrect parameter supplied to E04ZCF’
STOP

ELSE IF (IFAIL.EQ.2) THEN
WRITE (NOUT,*)

+ ’Probable error in derivative of objective function’
WRITE (NOUT,99998) (X(J),J=1,N)
WRITE (NOUT,*) ’The computed gradients are’
WRITE (NOUT,99998) (OBJGRD(J),J=1,N)

ELSE
I = IFAIL - 2
WRITE (NOUT,99997)

+ ’Probable error in derivative of constraint’, I,
+ ’ at the point’

WRITE (NOUT,99998) (X(J),J=1,N)
WRITE (NOUT,*)

+ ’The computed gradients of this constraint are’
WRITE (NOUT,99998) (CJAC(I,J),J=1,N)

END IF
20 CONTINUE

STOP
*
99999 FORMAT (1X,9F6.2)
99998 FORMAT (1X,1P,5e12.4)
99997 FORMAT (1X,A,I4,A)

END
*

SUBROUTINE OBJFUN(MODE,N,X,OBJF,OBJGRD,NSTATE)
* .. Scalar Arguments ..

real OBJF
INTEGER MODE, N, NSTATE

* .. Array Arguments ..
real OBJGRD(N), X(N)

* .. Executable Statements ..
OBJF = X(2)*X(6) - X(1)*X(7) + X(3)*X(7) + X(5)*X(8) - X(4)*X(9) -

+ X(3)*X(8)
OBJF = -OBJF
OBJGRD(1) = X(7)
OBJGRD(2) = -X(6)
OBJGRD(3) = -X(7) + X(8)
OBJGRD(4) = X(9)
OBJGRD(5) = -X(8)
OBJGRD(6) = -X(2)
OBJGRD(7) = -X(3) + X(1)
OBJGRD(8) = -X(5) + X(3)
OBJGRD(9) = X(4)
RETURN
END

*
SUBROUTINE CONFUN(MODE,NCNLN,N,NROWJ,X,C,CJAC,NSTATE)

* .. Parameters ..
real ZERO, TWO
PARAMETER (ZERO=0.0e0,TWO=2.0e0)

* .. Scalar Arguments ..
INTEGER MODE, N, NCNLN, NROWJ, NSTATE

* .. Array Arguments ..
real C(NROWJ), CJAC(NROWJ,N), X(N)

* .. Local Scalars ..

E04ZCF=E04ZCA NAG Fortran Library Manual

E04ZCF=E04ZCA.8 [NP3546/20A]

INTEGER I, J
* .. Executable Statements ..
* The zero elements of Jacobian matrix are set only once. This
* occurs during the first call to CONFUN (NSTATE = 1).

IF (NSTATE.EQ.1) THEN
DO 40 J = 1, N

DO 20 I = 1, NCNLN
CJAC(I,J) = ZERO

20 CONTINUE
40 CONTINUE

END IF
C(1) = X(1)**2 + X(6)**2
CJAC(1,1) = TWO*X(1)
CJAC(1,6) = TWO*X(6)
C(2) = (X(2)-X(1))**2 + (X(7)-X(6))**2
CJAC(2,1) = -TWO*(X(2)-X(1))
CJAC(2,2) = TWO*(X(2)-X(1))
CJAC(2,6) = -TWO*(X(7)-X(6))
CJAC(2,7) = TWO*(X(7)-X(6))
C(3) = (X(3)-X(1))**2 + X(6)**2
CJAC(3,1) = -TWO*(X(3)-X(1))
CJAC(3,3) = TWO*(X(3)-X(1))
CJAC(3,6) = TWO*X(6)
C(4) = (X(1)-X(4))**2 + (X(6)-X(8))**2
CJAC(4,1) = TWO*(X(1)-X(4))
CJAC(4,4) = -TWO*(X(1)-X(4))
CJAC(4,6) = TWO*(X(6)-X(8))
CJAC(4,8) = -TWO*(X(6)-X(8))
C(5) = (X(1)-X(5))**2 + (X(6)-X(9))**2
CJAC(5,1) = TWO*(X(1)-X(5))
CJAC(5,5) = -TWO*(X(1)-X(5))
CJAC(5,6) = TWO*(X(6)-X(9))
CJAC(5,9) = -TWO*(X(6)-X(9))
C(6) = X(2)**2 + X(7)**2
CJAC(6,2) = TWO*X(2)
CJAC(6,7) = TWO*X(7)
C(7) = (X(3)-X(2))**2 + X(7)**2
CJAC(7,2) = -TWO*(X(3)-X(2))
CJAC(7,3) = TWO*(X(3)-X(2))
CJAC(7,7) = TWO*X(7)
C(8) = (X(4)-X(2))**2 + (X(8)-X(7))**2
CJAC(8,2) = -TWO*(X(4)-X(2))
CJAC(8,4) = TWO*(X(4)-X(2))
CJAC(8,7) = -TWO*(X(8)-X(7))
CJAC(8,8) = TWO*(X(8)-X(7))
C(9) = (X(2)-X(5))**2 + (X(7)-X(9))**2
CJAC(9,2) = TWO*(X(2)-X(5))
CJAC(9,5) = -TWO*(X(2)-X(5))
CJAC(9,7) = TWO*(X(7)-X(9))
CJAC(9,9) = -TWO*(X(7)-X(9))
C(10) = X(3)**2
CJAC(10,3) = TWO*X(3)
C(11) = (X(4)-X(3))**2 + X(8)**2
CJAC(11,3) = -TWO*(X(4)-X(3))
CJAC(11,4) = TWO*(X(4)-X(3))
CJAC(11,8) = TWO*X(8)
C(12) = (X(5)-X(3))**2 + X(9)**2
CJAC(12,3) = -TWO*(X(5)-X(3))
CJAC(12,5) = TWO*(X(5)-X(3))
CJAC(12,9) = TWO*X(9)
C(13) = X(4)**2 + X(8)**2
CJAC(13,4) = TWO*X(4)
CJAC(13,8) = TWO*X(8)
C(14) = (X(4)-X(5))**2 + (X(9)-X(8))**2
CJAC(14,4) = TWO*(X(4)-X(5))
CJAC(14,5) = -TWO*(X(4)-X(5))
CJAC(14,8) = -TWO*(X(9)-X(8))
CJAC(14,9) = TWO*(X(9)-X(8))
C(15) = X(5)**2 + X(9)**2
CJAC(15,5) = TWO*X(5)
CJAC(15,9) = TWO*X(9)

E04 – Minimizing or Maximizing a Function E04ZCF=E04ZCA

[NP3546/20A] E04ZCF=E04ZCA.9

RETURN
END

9.2 Program Data

E04ZCF Example Program Data
1.10 1.20 1.30 1.40 1.50 1.60 1.70 1.80 1.90
1.10 2.20 3.30 4.40 5.50 6.60 7.70 8.80 9.90

9.3 Program Results

E04ZCF Example Program Results

Derivatives probably correct at the point
1.1000E+00 1.2000E+00 1.3000E+00 1.4000E+00 1.5000E+00
1.6000E+00 1.7000E+00 1.8000E+00 1.9000E+00

Derivatives probably correct at the point
1.1000E+00 2.2000E+00 3.3000E+00 4.4000E+00 5.5000E+00
6.6000E+00 7.7000E+00 8.8000E+00 9.9000E+00

E04ZCF=E04ZCA NAG Fortran Library Manual

E04ZCF=E04ZCA.10 (last) [NP3546/20A]

	E04ZCF
	1 Purpose
	2 Specifications
	2.1 Specification for E04ZCF
	2.2 Specification for E04ZCA

	3 Description
	4 References
	5 Parameters
	N
	NCNLN
	NROWJ
	CONFUN
	MODE
	NCNLN
	N
	NROWJ
	X
	C
	CJAC
	NSTATE
	IUSER
	RUSER

	OBJFUN
	MODE
	N
	X
	OBJF
	OBJGRD
	NSTATE
	IUSER
	RUSER

	C
	CJAC
	OBJF
	OBJGRD
	X
	WORK
	LWORK
	IFAIL
	IUSER
	RUSER
	IFAIL_E04ZCA

	6 Error Indicators and Warnings
	IFAIL < 0
	IFAIL = 1
	IFAIL = 2

	7 Accuracy
	8 Further Comments
	9 Example
	9.1 Program Text
	9.2 Program Data
	9.3 Program Results

	Fortran Library, Mark 20
	Foreword
	Introduction
	Essential Introduction
	Mark 20 News
	Thread Safety
	Library Contents
	Withdrawn Routines
	Advice on Replacement Calls for Withdrawn/Superseded Routines
	Acknowledgements

	Indexes
	Keywords in Context
	GAMS Index

	Implementation-specific Information
	Users' Note

	A02 - Complex Arithmetic
	C02 - Zeros of Polynomials
	C05 - Roots of One or More Transcendental Equations
	C06 - Summation of Series
	D01 - Quadrature
	D02 - Ordinary Differential Equations
	D02M/N Introduction

	D03 - Partial Differential Equations
	D04 - Numerical Differentiation
	D05 - Integral Equations
	D06 - Mesh Generation
	E01 - Interpolation
	E02 - Curve and Surface Fitting
	E04 - Minimizing or Maximizing a Function
	F - Linear Algebra
	F01 - Matrix Factorizations
	F02 - Eigenvalues and Eigenvectors
	F03 - Determinants
	F04 - Simultaneous Linear Equations
	F05 - Orthogonalisation
	F06 - Linear Algebra Support Routines
	F07 - Linear Equations (LAPACK)
	F08 - Least-squares and Eigenvalue Problems (LAPACK)
	F11 - Sparse Linear Algebra
	G01 - Simple Calculations on Statistical Data
	G02 - Correlation and Regression Analysis
	G03 - Multivariate Methods
	G04 - Analysis of Variance
	G05 - Random Number Generators
	G07 - Univariate Estimation
	G08 - Nonparametric Statistics
	G10 - Smoothing in Statistics
	G11 - Contingency Table Analysis
	G12 - Survival Analysis
	G13 - Time Series Analysis
	H - Operations Research
	M01 - Sorting
	P01 - Error Trapping
	S - Approximations of Special Functions
	X01 - Mathematical Constants
	X02 - Machine Constants
	X03 - Inner Products
	X04 - Input/Output Utilities
	X05 - Date and Time Utilities

